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Abstract

We study local temperature fluctuations in a 2+1 dimensional CFT on the sphere, dual to a black hole
in asymptotically AdS space-time. The fluctuation spectrum is governed by the lowest-lying hydrody-
namic sound modes of the system whose frequency and damping rate determine whether temperature
fluctuations are thermal or quantum. We calculate numerically the corresponding quasinormal fre-
quencies and match the result with the hydrodynamics of the dual CFT at large temperature. As a
by-product of our analysis we determine the appropriate boundary conditions for calculating low-lying
quasinormal modes for a four-dimensional Reissner-Nordström black hole in global AdS.
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1 Introduction

The field of black hole thermodynamics was cast into life by the definition of black hole entropy and
temperature in the seminal papers by Bekenstein [1] and Hawking [2]. Early on it was viewed as
an interesting analogy between dynamical equations of two rather different fields of physics, general
relativity and statistical mechanics, but with the advent of anti de Sitter - conformal field theory
(AdS/CFT) duality [3] the analogy has been promoted to a precise correspondence for a class of black
holes.

A Schwarzschild black hole in asymptotically flat spacetime is unstable due to the Hawking effect.
It evaporates if it is surrounded by empty spacetime and as it has negative specific heat it cannot be
in stable equilibrium with a thermal gas either. In fact, due to the Jeans instability, the thermody-
namic limit is not well defined in Einstein gravity in asymptotically flat spacetime and there exist no
equilibrium configurations at finite temperature and density.

The situation is different in asymptotically AdS spacetime, where a large black hole above the
Hawking-Page phase transition [4] is a stable configuration. Under AdS/CFT duality, such a black
hole corresponds to a thermal state in the conformal field theory at the boundary of spacetime, with
the CFT temperature equal to the Hawking temperature of the black hole [5]. The appropriate
interpretation of black hole thermodynamics in asymptotically AdS spacetime is in terms of the dual
field theory rather than spacetime physics in the bulk. The AdS black hole geometry itself is a
solution of the classical field equations of general relativity without matter and observers in free fall
outside a large AdS black hole do not detect any propagating Hawking radiation [6]. Nonetheless the
temperature of the dual CFT is a well-defined observable.

Any macroscopic physical observable is subject to statistical fluctuations. When one measures
a particular quantity one gets results which are distributed around the mean value with some finite
standard deviation. For the macroscopic objects the fluctuations are usually governed by random
thermal noise, but when the system is small enough, the quantum uncertainty priciple starts playing a
significant role and renders the overall behavior of the system quite different. Thus one distinguishes
between the regimes of thermal and quantum fluctuations of the observable. This treatment can
be readily applied to the fluctuations of the temperature of the system, which we are considering
here. Due to energy conservation, the total value of the temperature in the dual field theory does
not fluctuate. However, local fluctuations do exist and have a well-defined physical meaning. So in
the system under consideration one should be able to observe thermal or quantum regimes of the
fluctuations of local temperature.

In this paper we use AdS/CFT duality to investigate local temperature fluctuations in a field
theoretic system at strong coupling via the dynamics of asymptotically AdS black holes. We focus
on the AdS-Reissner-Nordström solution dual to a CFT at finite temperature and chemical potential.
The rationale for switching on a chemical potential is that it allows us to consider low temperature
without compromising thermodynamic stability, which as we shall see leads to a crossover from a
thermal to a quantum regime in temperature fluctuations.

The paper is organized as follows. In Section 2 we recall the notion of temperature fluctuations
and analyze them in the case of underdamped modes. In Section 3 we consider the hydrodynamic
approximation to the sound modes of CFT on the sphere, dual to the black hole under consideration,
and in Section 4 we carry out a direct gravitational analysis of the system and compute numerically the
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lowest-lying quasinormal modes of the black hole. We conclude in Section 5. Appendix A is devoted
to the detailed analysis of the transition between classical and quantum regimes of the fluctuations.
In Appendix B we consider details of the calculation of QNM of Reissner-Nordström black hole in
global AdS4.

2 Temperature fluctuations

Temperature fluctuations in classical systems have been widely studied. In classical statistical me-
chanics the variance of a statistical variable is given by the width of its probability distribution, which
for temperature gives [7]1

〈δT 2〉 = T 2

Cv
, (1)

where T is the temperature and Cv is the specific heat. From this expression, it is clear that in order
for the temperature to be a well-defined quantity, the specific heat must be large.

Temperature fluctuations close to equilibrium can be described by linear response theory [8, 9].
To this end, we consider a system in which the temperature of a black body is in equilibrium with the
surrounding radiation. In response to an external perturbation the system will relax to equilibrium
on a characteristic time-scale τ , with its temperature changing with time according to

dT

dt
= −T − Te

τ
, (2)

with Te being the equilibrium temperature. The change in entropy ∆S caused by a perturbation is
related to the change in temperature as

∆Te =
∂T

∂S
∆S =

T

Cv
∆S. (3)

The Fourier spectrum of temperature fluctuations is thus related to that of the entropy by a response
function (generalized susceptibility):

δT (ω) = α(ω)∆S(ω), (4)

given by (3) and (2):

α(ω) =
T

Cv

1

1− iωτ
. (5)

The fluctuation-dissipation theorem [7] relates the mean square temperature fluctuation to the imag-
inary part of the susceptibility:

〈δT 2〉 = ~
∫ ∞

−∞

dω

2π
Imα(ω) coth

~ω
2T

. (6)

The divergence of the integral at high frequencies is fictitious, and is an artifact of the single-pole
form for the response function, which is just an approximation valid at low frequencies. The integral

1We set kB = 1 but will keep the explicit dependence on ~ in this section and in App. A for distinguishing classical
and quantum contributions.
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cannot be carried out exactly, but it can easily be approximated in various limits [9]. In particular
the classical result (1) is reproduced at Tτ � ~, by replacing the coth by the inverse of its argument.
In the opposite regime of Tτ � ~,

〈δT 2〉 ' ~T
πCvτ

lnωcτ, (7)

where ωc is a cutoff frequency, see App. A for details.
Thus far we have been working in the approximation in which the dominant relaxation is given by

an overdamped mode. In studying temperature fluctuations of the AdS black hole we will encounter
a different situation, when relaxation to equilibrium is driven by slowly decaying oscillations. The
above discussion then needs to be modified. To this end, we consider the damped harmonic oscillator
with an internal frequency Ω and relaxation rate Γ. The response function, or the retarded Green
function, is given by

α(ω) = GR(ω) = −Ω2

k

1

ω2 − Ω2 + i2ωΓ
. (8)

Here k is the “spring constant” which in our case is given by k = Cv
T since the change in free energy

is ∆SδT = Cv
T δT

2. So the response function is given by

α(ω) = −TΩ
2

Cv

ω2 − Ω2 − i2ωΓ

(ω2 − Ω2)2 + 4ω2Γ2
. (9)

The two oscillation poles in the complex frequency plane are located at

ω = −iΓ±
√

Ω2 − Γ2 ' −iΓ± Ω.

The approximate equality on the right holds for Ω � Γ, the case that we will encounter shortly in the
holographic setup.

Depending on the ratios between the three parameters T , Ω and Γ, various regimes of temperature
fluctuations are possible. In particular, if temperature is much bigger than both the frequency and
decay rate, the classical result (1) is recovered. The leading quantum corrections can be readily
computed, here for simplicity displayed in the oscillatory regime T/~ � Ω � Γ (see App. A):

〈δT 2〉 ' T 2

Cv
+

~2Ω2

12Cv
− ~3ζ(3)Ω2Γ

2π3CvT
+O

(
~4Ω2Γ2

T 2

)
. (10)

The first two terms come from the poles in the response function and the third term is due to a
summation of Matsubara modes.

The “quantum” regime comes about when T/~ � max(Ω,Γ)/2π, which when Ω � Γ yields

〈δT 2〉 ' ~TΩ
2Cv

. (11)

A careful analysis is carried out in App. A where we define the classicality parameter (for Ω > Γ):

q ≡ 2πT

~Ω
. (12)

If q > 1 the temperature fluctuations are in the classical regime, while for q < 1 the temperature
fluctuations are quantum.

3



The overdamped regime is recovered when Γ � Ω. Then a new scale emerges, namely τ = Γ/Ω2,
which plays the rôle of the relaxation time. In this regime the temperature fluctuations obey

〈δT 2〉 ' ~T
πCvτ

log Γτ , (13)

which coincides with (7) provided that the cutoff frequency ωc is identified with Γ.

3 Temperature fluctuations of charged black hole in hydrodynamic
approximation

The system we are interested in is a black hole in the space of constant negative curvature (AdSd+2),
which is dual to a strongly-coupled CFT in d+ 1 dimensions, heated to a temperature that coincides
with the Hawking temperature of the black hole. For the most part, we consider the four-dimensional
black-hole (d = 2), but many formulas in this section are valid in any number of dimensions. Since the
neutral AdS black hole becomes thermodynamically unstable at low temperatures, we shall consider a
larger class of solutions, namely AdS-Reissner-Nordström black holes which carry non-zero charge and
are dual to a CFT at non-zero chemical potential. This will allow us to probe the low-temperature
regime when quantum effects are expected to be important.

The metric of the AdS4 black hole under consideration is

ds2 = −f(r)dt2 + dr2

f(r)
+ r2

(
dθ2 + sin2 θ dϕ2

)
, (14)

where

f(r) = 1− 2M

r
+
Q2

r2
+
r2

R2
. (15)

The temperature, entropy, chemical potential2 and extremal charge of the black hole are given by

T =
1 + 3

r2+
R2 − Q2

r2+

4πr+
=

1 + 3
r2+
R2

4πr+

(
1− Q2

Q2
ext

)
, S = πr2+, µ =

Q

r+
, Qext = r+

√
1 + 3

r2+
R2

,(16)

where r+ is the horizon radius, defined as the largest root of f(r+) = 0. We absorb the Planck mass
Mpl into the definition of the parameters M and Q, which now have the dimension of length. The
specific heat of the black hole is given by [10]

Cv = 2πr2+

(
3r2+ −R2

3r2+ +R2
+

Q2

Q2
ext

)−1(
1− Q2

Q2
ext

)
, (17)

which vanishes, along with the temperature, for the extremal black hole.
The dual CFT is defined on S2 × Rt, the sphere has radius R, because far away from the horizon

the metric (14) asymptotes to

ds2 ' r2

R2
ds2boundary +

R2

r2
dr2, ds2boundary = −dt2 +R2(dθ2 + sin2 θ dϕ2). (18)

2This is the electrostatic potential of the black hole, identified with the chemical potential of the dual field theory by
the AdS/CFT correspondence.
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We will be interested in the statistics of temperature fluctuations of the dual field theory on the
boundary of spacetime. Let δT (θ, ϕ) be the difference between the local temperature at the point
(θ, ϕ) on S2 and the Hawking temperature. It is convenient to expand the temperature difference in
spherical harmonics:

δT (θ, ϕ) =
∑
lm

δTlmYlm(θ, ϕ). (19)

The spherical functions are assumed to be canonically normalized:∫
Sd

ddx
√
g Y ∗

lm(x)Yl′m′(x) = V δll′δmm′ , (20)

where V is the surface area of the sphere. The two-point correlation function of temperature fluctu-
ations, by rotational symmetry, should be independent of the magnetic quantum numbers. We thus
define the power spectrum of temperature fluctuations in the l-th harmonics as

〈δT ∗
lmδTl′m′〉 ≡

〈
δT 2

l

〉
δll′δmm′ . (21)

The inverse Hawking temperature is identified with the Euclidean-time periodicity of the black
hole solution, which means that the black hole temperature fluctuations are related to fluctuations
of the g00 metric component. This relationship can be made precise with the help of the AdS/CFT
correspondence. According to AdS/CFT, metric fluctuations are dual to the energy-momentum tensor
in the field theory on the boundary of AdS. The local temperature variation, in any CFT, is related
to the local variation in the energy density:

δT =
1

cv
δT00, (22)

where cv = ∂ε/∂T is the volumetric heat capacity, and Tµν is the energy-momentum tensor of the CFT.
The fluctuation-dissipation theorem then expresses the power spectrum of temperature fluctuations
through the retarded density-density correlator:

〈
δT 2

l

〉
=

1

c2vV

∫ +∞

−∞

dω

2π
ImGl(ω) coth

ω

2T
(23)

Gl(ω) = i

∫ ∞

0
dt e iωt

∫
ddx

√
g Yl0(x) 〈[T00(t, x), T00(0, 0)]〉 . (24)

The factor of 1/V in the first equation arises because of the normalization (20) of the spherical
functions.

The two-point correlator of the energy density can be calculated holographically by studying the
response of the gravitational background to scalar metric perturbations. The retarded two-point
function is then expressed in terms of the quasinormal modes (QNMs) of the black hole [11, 12]. For
a black hole with a flat horizon, the lowest QNMs exhibit hydrodynamic behavior consistent with
shear and sound modes of the thermalized plasma state of the dual CFT [11, 12]. The hydrodynamic
approximation should still be accurate for a sufficiently large black hole with a spherical horizon.
Indeed one can calculate the lowest QNMs of a large AdS black hole from the hydrodynamics on the
sphere, without any recourse to Einstein’s equations [13, 14]. In this section we compute the response
function in the same hydrodynamic approximation, which should be valid in the high-temperature
regime, TR� 1.
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The hydrodynamic equations of motion follow from the conservation of the energy-momentum
tensor:

∇µT
µν = 0, (25)

where

Tµν = εuµuν + pδµν − η∆µα∆νβ

(
∇αuβ +∇βuα − 2

d
ηαβ∇µu

µ

)
− ζ∆µν∇λu

λ. (26)

Here uµ is the local 4-velocity of the liquid (satisfying uµuµ = −1), ε is its energy density, p is the
pressure, η and ζ are the shear and bulk viscosities, and the covariant derivative ∇µ is taken with
respect to the boundary metric (18). For a conformal theory, Tµµ = 0 leads to ζ = 0 and ε = dp.

The standard way to compute the two-point function of the energy-momentum tensor is to study
a response to metric perturbations. Then,〈

Tµν(x)
〉
g+h

=
〈
Tµν(x)

〉
g
+
i

2

∫
dd+1y

√
|g|
〈
Tµν(x)T λρ(y)

〉
g
hλρ(y) +O

(
h2
)
. (27)

To find the density-density correlation function we thus need to linearize the hydrodynamic equations
in the presence of a small lapse function h00 on top of the metric of Sd × Rt. The linearized Navier-
Stokes equations on Sd × Rt can be found in [13, 14]. Keeping track of the non-zero lapse function,
we can recover the source term. This results in a coupled system of two linear equations:(

∂t (ε+ p)

c2s∇2 (ε+ p) ∂t − 2
d ηR−

(
ζ + 2 d−1

d η
)
∇2

)(
δε

∇iδu
i

)
=

(
0

1
2 (ε+ p)∇2h00

)
, (28)

where R = d(d− 1)/R2 is the Ricci curvature and −∇2 is the invariant Laplacian on the sphere, and
c2s = ∂p/∂ε is the speed of sound. Expanding in spherical harmonics, solving for δε and comparing
with (27), we get for the Green’s function defined in (24):

Gl(ω) = −ε+ p

c2s

Ω2
l

ω2 − Ω2
l + 2iωΓl

(29)

with

Ωl =
cs
R

√
l (l + d− 1) (30)

Γl =
1

(ε+ p)R2

[
(d− 1) (l + d) (l − 1)

d
η +

l (l + d− 1)

2
ζ

]
. (31)

The correct normalization of the response function, as in (9), follows from (23), (29) by virtue of a
thermodynamic identity

cvc
2
s =

∂ε

∂T

∂p

∂ε
=
∂p

∂T
= s =

ε+ p

T
.

This guarantees matching to classical thermodynamics (1) in the high-temperature limit.
Taking into account that for a conformal fluid, c2s = 1/d and ζ = 0, and using the universal

holographic result [15, 11] for the viscosity-to-entropy ratio η/s = 1/4π gives for the hydrodynamic
QNMs [13, 14]:

ωhyd = ± 1

R

√
l (l + d− 1)

d
− i(d− 1)(l + d)(l − 1)

4πdTR2
. (32)
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We have taken into account here that Ωl/Γl ∼ RT/l � 1 (unless l is very big, but the hydrodynamic
approximation is not applicable to such high-frequency modes anyway), and so the sound modes atten-
uate very slowly. It is also true that T/Ωl ∼ TR/l � 1, which implies that temperature fluctuations
are purely classical as long as hydrodynamics is an accurate approximation.

Our discussion so far applied to neutral black holes. The main complication that arises for charged
black holes is that eq. (22) does not hold true any more. The energy density of a charged fluid is a
function of two variables, the temperature and chemical potential. Temperature fluctuations then mix
with those in the chemical potential. As a result, δT is a linear combination of δT00 and the charge
density fluctuation δJ0. The response functions for temperature relaxation then includes, in addition
to 〈T00T00〉, also a contribution from 〈T00J0〉 and 〈J0J0〉. We will not discuss these complications
further, so our results for charged black holes literally apply to fluctuations in energy rather than
temperature.

However, equations (29)–(31) apply to a charged black hole without modifications. This is because
the pressure of a conformal fluid is fixed by conformal symmetry, and thus charge and energy density
fluctuations do not mix. Using the thermodynamic relation ε+ p = Ts+ µρ, we get:

ωhyd = ± 1

R

√
l(l + d− 1)

d
− i(d− 1)(l + d)l(l − 1)

4πdR2

1

T + µQS
,

where S and Q are the total entropy and charge of the system. Substituting the values for temperature,
charge, potential and entropy of the dual Reissner-Nordström black hole (16), we obtain the following
final result for the sound mode frequency in the hydrodynamic regime

ωhyd = ± 1

R

√
l(l + d− 1)

d
− i(d− 1)(l + d)(l − 1)

d

r+
R2 + 3r2+ + 3µ2R2

. (33)

As an illustration, the hydrodynamic quasinormal frequencies for the harmonics l = 2 through l = 7
at various values of r+ and µ are shown for d = 2 (i.e. AdS4) in Fig. 1.
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Figure 1: The harmonics with l = 2 through l = 7 of hydrodynamic quasinormal modes (33) at
various values of r+ and µ for the AdS-Reissner-Nordström black hole.

It is important to note here, that there are no quasinormal modes with l = 0 and l = 1 in the
spectrum. The former would correspond to the homogeneous change of the energy density in the
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whole volume of the system and thus this fluctuation would violate the energy conservation law. From
the point of view of linear response theory this means that once the system is perturbed by a force,
which homogeneously changes the energy density, it acquires a new equilibrium state and does not
relax to the initial one. The mode with l = 1 corresponds to a simple rotation in S2. In the case of
flat space it would correspond to a translation along a given direction. Thus in homogeneous space it
is the Goldstone mode, associated with translation symmetry. Indeed the shift of the center of mass of
the system will not change its state and hence not produce any counter-force, so there is no relaxation
associated with this mode. The argument above indicates that we are dealing with local temperature
fluctuations. The fluctuations of the total temperature may be described only by the l = 0 mode,
because all the others average to zero upon integration over the volume of the system. But at the
same time for the closed system with conserved energy, such as the large AdS-RN black hole or the
CFT on a sphere, the fluctuations of the total temperature are forbidden by the energy conservation
law and thus the l = 0 mode is absent. Nonetheless, local fluctuations of temperature are allowed and
their study is a well-defined problem.

Finally, we note that for high temperatures, corresponding to large black hole radii, r+, the
imaginary part of the QNM frequency (33) is small and thus temperature fluctuations in this regime are
always classical. In order to approach the quantum regime, we need to consider small r+, which in turn
is outside of the applicability of hydrodynamics. For this we will turn to the direct gravitational study
of spherical black holes in the next section, for which the analysis necessitates numerical calculations.

4 Quasinormal modes of spherical black hole

The quasinormal modes for a spherical AdS-Reissner-Nordström black hole were thoroughly studied in
[16, 17, 18, 19, 20] (see [21] for a review). The entire spectrum of quasinormal modes of the Reissner-
Nordström black hole in AdS4 was calculated in [20], following the approach developed in [18, 19, 22].
Although in the axial gravitational channel an “exceptional” frequency was found, which can be related
to the hydrodynamic shear mode [11], no long-lived modes were observed in the polar gravitational
channel, which would correspond to the sound mode [12] discussed above. This discrepancy with the
hydrodynamic results was pointed out in [13, 14]. It turned out, that one should pay special atten-
tion to the boundary conditions of the polar gravitational mode, because simple Dirichlet boundary
conditions on the master field lead to metric fluctuations, which perturb the asymptotic behavior of
AdS4 spacetime. Instead, special Robin boundary conditions were found, which do not perturb the
asymptotic metric and lead to quasinormal modes consistent with the hydrodynamic picture. The cor-
responding numerical calculations were done for the 5- and 4-dimensional AdS-Schwarzschild metric in
[13, 14] and analytic results for long-lived modes of neutral black holes in AdS-space of any dimension
were obtained in [23]. The analogous treatment of Kerr-AdS black holes was made in [24, 25]. The
quasinormal frequencies of the sound mode in an AdS-Reissner-Nordström black hole were obtained
in [26] for AdS5−7 but have not been considered for AdS4 to the best of our knowledge.3 We address
this problem in Appendix B and use the results here.

We study the quasinormal frequencies ω0 of the gravitational polar mode (related to the dual
hydrodynamic sound mode) for different choices of charge and horizon radii of the black hole. The
resulting frequencies at r+ = 5R and r+ = 10R for angular momentum l = 2 are shown in Fig. 2. The
curves demonstrate similar behavior to that observed for the “exceptional” mode in the axial channel

3We note also, that in [26] Dirichlet boundary conditions were used for the master function at the AdS boundary and
quasinormal modes calculated in this way may not coincide with the hydrodynamic ones.
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in [20]. For a neutral black hole our results coincide with those presented in [14] for r+ . 20R, which
is the range over which our numerical calculation yields reliable precision.

r+ = 5 R

r+ = 10 R

0.2 0.4 0.6 0.8

Q

Qext

0.02

0.04

0.06

0.08

0.10

0.12

R ImHΩ0L

Figure 2: Imaginary part of the quasinormal frequency of the gravitational mode with l = 2 for
r+ = 5R and r+ = 10R as a function of the black hole charge. The frequency is given in units of the
AdS curvature-radius R.

At finite electrostatic potential it is especially interesting to compare the results of our computation
to the hydrodynamic approximation (33). Fig. 3 shows the relation between the numerical result and
the hydrodynamic one for different black hole temperatures. One can see that the curves approach
unity quite fast and already at T ≈ 2R−1 the discrepancy is less than one percent, which is comparable
to our numerical precision. This is a valuable check of the applicability of our procedure for calculating
quasinormal modes.
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Μ
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ImHΩ0L�ImHΩhydL

T=
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1.2 R-1
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Figure 3: The relative values of the real and imaginary part of the quasinormal frequency at l = 2
with respect to that given in the hydrodynamic approximation (33).

Using the numerical values of the quasinormal frequencies for various T and µ, we can calculate
the value of the parameter q, which measures the classicality of the temperature fluctuations (12).
It is instructive to plot the curve q = 1 in the phase diagram of the charged black hole in AdS space
in the grand canonical ensemble, i.e. for fixed temperature T and asymptotic electrostatic potential µ.

The phase diagram in Fig. 4 contains also the phase transition between the Reissner-Nordström
black hole and the thermal gas of particles in the background of the extremal black hole with given
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potential µ, denoted by AdS∗ [27]. At zero charge this phase transition reduces to the Hawking-Page
transition for the AdS-Schwarzschild black hole [4]. We find that the lowest value of the parameter
q, which is achieved before this phase transition occurs, is q ≈ 0.92 so the deep quantum regime is
never reached for the neutral black hole. Instead one should speak about the region where quantum
effects are already important. It is worth noting that the line q = 1 presumably asymptotes to the
linear relation between temperature and potential, so concerning the classical/quantum transition in
the behavior of the temperature fluctuations, T/µ is the relevant parameter, rather than T itself.
This argument is consistent with the conformal nature of the system under consideration, where only
the relation between temperature and chemical potential has physical meaning. The other interesting
line in the phase diagram is the one describing the region, where the temperature (energy) fluctu-
ations computed numerically via (6) using (9) for the gravitational quasinormal modes are of the
order of the temperature itself. Linear response theory is no longer reliable below this line and it
becomes meaningless to speak of small fluctuations. Extremal black holes are thus not included in our
treatment.

Classical

Sc hw
arzschild
Quantum

Extremal

A
dS
*

2 4 6 8
Μ0.0

0.1

0.2

0.3

0.4

0.5

0.6
TR

Figure 4: Phase structure of the charged black hole in AdS4 in the grand canonical ensemble. The
black line marks the “Hawking-Page type” phase transition [27]. The green line is q = 1, and thus
in the green region quantum effects become important. The purple line marks the region, where the

numerically computed fluctuation
〈
δT 2

〉1/2
is comparable to the temperature itself (at µ > 6 our

precision does not allow us to continue the line reliably).

5 Discussion

We have studied temperature (more precisely, energy) fluctuations in the holographic dual of the AdS-
Reissner-Nordström black hole. Interestingly, temperature fluctuations are described by quasinormal
modes of a black hole in the sound channel, for which the oscillation frequencies are much larger than
the attenuation rate. This leads to a rather specific behavior of temperature fluctuations. For instance,
the transition from thermal to quantum fluctuations is controlled by the oscillation frequency (related
to the speed of sound) rather than damping rate, as it would have been for the shear modes.

As expected, temperature fluctuations behave classically for a large black hole and become more
and more quantum as the black hole temperature is lowered. Temperature fluctuations of a neutral AdS
black hole never become really quantum, because the black hole becomes thermodynamically unstable

10



and undergoes the Hawking-Page phase transition before the fluctuations enter the quantum regime.
Charged black holes can be sufficiently small for fluctuations to become quantum. For nearly-extremal
black holes fluctuations become so strong that one presumably cannot trust the linear response theory
any more. The strongly non-equilibrium behavior that sets in can perhaps be analyzed along the lines
of [28, 29].

We reiterate that our analysis for charged black holes applies to the fluctuations of energy rather
than temperature. The temperature fluctuations mix with those of charge density, which may give rise
to an overdamped pole in the response function. We leave this interesting issue for future investigation.
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A Temperature fluctuations

A.1 The overdamped mode

Let us consider the integral

〈δT 2〉 = ~T
2πCv

∫ ∞

−∞
dω

ωτ

(ωτ)2 + 1
coth

(
~ω
2T

)
=

~T
2πCvτ

∫ ∞

−∞
dx

x

x2 + 1
coth

( x
2r

)
, (34)

where x = ωτ and we have defined

r ≡ Tτ

~
. (35)

We can now conveniently define

I ≡ 2πCvτ

~T
〈δT 2〉 =

∫ ∞

−∞
dx f, f ≡ x

x2 + 1
coth

( x
2r

)
, (36)

As I is UV-divergent, we introduce a cutoff xc ≡ ωcτ : Ireg =
∫ xc
−xc dx f . Considering now the contour

integral

Iγ =

∮
γ
dz

z

z2 + 1
coth

( z
2r

)
, (37)

where γ is given in fig. 5. The contribution from the arc will vanish for xc → ∞, i.e.

lim
xc→∞

Iγ = lim
xc→∞

p.v. Ireg, (38)

as long as the contour does not hit a pole on the imaginary axis.

11
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Figure 5: Contour γ in the complex x plane.

Using residue theory, we have

Iγ = 2πi

[
Res(f, i) +

Λ∑
n=1

Res(f, 2nπri)

]
, Λ ≡ floor

( xc
2πr

)
. (39)

The residues can be calculated easily

Res(f, i) = − i

2
cot

(
1

2r

)
, (40)

Res(f, 2nπri) =
4nπr2i

1− 4n2π2r2
, (41)

and thus the contour integral reads

Iγ = π cot

(
1

2r

)
−

Λ∑
n=1

8nπ2r2

1− 4n2π2r2
. (42)

So far we did not assume anything about r other than it being a real positive constant. In the limit
r � 2π, we can expand the above expression to get

Iγ ' 2πr+ 2

Λ∑
n=1

1

n
, (43)

where the last term is the harmonic sum, which is known to be divergent. Expressing the harmonic
sum in terms of the cutoff, we have

Iγ ' 2πr− π

6r
+ 2 log

( xc
2πr

)
+ 2γE +O

(
r

xc
,
1

r3

)
, (44)

where γE is the Euler constant. Finally, we can write [9]

〈δT 2〉 = T 2

Cv

[
1− ~2

12T 2τ2
+

~
πTτ

(
log

(
~ωc
2πT

)
+ γE

)
+O

(
1

ωcτ
,

~4

(Tτ)4

)]
, (45)
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where ωc is the cut-off frequency.
In the opposite limit, r � 2π, the temperature fluctuations are in the quantum regime and can be

approximated as follows. We neglect the residues coming from the response function and approximate
the sum in (42) with an integral and obtain

Iγ ' log x2c , (46)

which we can write as [9]

〈δT 2〉 ' ~T
πCvτ

logωcτ. (47)

A more careful treatment of the arc is necessary because a simple power counting naively tells us
that it is logarithmically divergent. We want to show that

lim
xc→∞

∫
C+

xc

dz
z

z2 + 1
coth

( z
2r

)
= 0, (48)

where C+
xc denotes the northern semicircle of radius xc. The arc can be parametrized by z = xce

iθ,
where θ ∈ [0, π]. Rewriting the coth, we have

coth
( z
2r

)
=

(
1 +

2e−z/r

1− e−z/r

)
=

(
−1− 2ez/r

1− ez/r

)
, (49)

which we will use for the first and second quadrants of the z plane, respectively. We therefore have∫
C+

xc

dz
z

z2 + 1
coth

( z
2r

)
=

∫
C+1

xc

dz
z

z2 + 1

(
1 +

2e−z/r

1− e−z/r

)
+

∫
C+2

xc

dz
z

z2 + 1

(
−1− 2ez/r

1− ez/r

)
= Ipol+1 + Iexp+1 + Ipol+2 + Iexp+2 . (50)

The integrals of the two polynomials in z can be carried out

Ipol+1 + Ipol+2 = i

∫ π
2

0
dθ

x2ce
i2θ

x2ce
i2θ + 1

− i

∫ π

π
2

dθ
x2ce

i2θ

x2ce
i2θ + 1

= 2<

[
i

∫ π
2

0
dθ

x2ce
i2θ

x2ce
i2θ + 1

]
= −2 arccoth(x2c),

(51)

which goes to zero in the limit of xc → ∞. Now let us consider the first integral with exponentials

Iexp+1 =

∫
C+1

xc

dz
ze−z/r

(z2 + 1)(1− e−z/r)
. (52)

Since we are interested in the large xc behavior of this integral, let us instead consider

Ĩexp+1 =

∫
C+1

xc

dz

z

e−z/r

1− e−z/r
= i

∫ π
2

0
dθ

exp
(
−xc

r e
iθ
)

1− exp
(
−xc

r e
iθ
) . (53)

We will now need the lemma that ∣∣∣∣∫ b

a
dz f(z)

∣∣∣∣ ≤ ∫ b

a
dz M(z), (54)
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where f(z) is a complex function andM(z) is a real-valued function on the real interval [a, b] such that
|f(z)| ≤ M(z) everywhere on said interval (to prove this lemma, compose the integral into Riemann
sums and use the triangle inequality). Hence we can write

|Ĩexp+1 | ≤
∫ π

2

0
dθ

e−
xc
r

cos θ√
1 + e−

2xc
r

cos θ − 2e−
xc
r

cos θ cos
(
xc
r sin θ

) . (55)

To simplify the problem we will now assume that xc = (2m + 1)πr with m being an integer. This
value of the cut off is chosen such that the contour goes right in the middle between the Matsubara
poles on the imaginary axis. We can now write

|Ĩexp+1 | ≤ A

∫ π
2

0
dθ exp

(
−xc

r
cos θ

)
=
Aπ

2

[
I0
(
(2m+ 1)π

)
− L0

(
(2m+ 1)π

)]
, (56)

where A & 1 is a constant of order one taking on the minimum value of the denominator of eq. (55).
Expanding the above expression for large m, we have

|Ĩexp+1 | ≤
A

(2m+ 1)π
+O(m−3), (57)

which clearly goes to zero for m → ∞. The same proof can be applied to Iexp+2 and hence is bounded
by the same numerical value.

A.2 The underdamped mode

Let us now consider the integral

〈δT 2〉 = ~T
2πCv

∫ ∞

−∞
dω

2ωΓΩ2

(ω2 − Ω2)2 + 4ω2Γ2
coth

(
~ω
2T

)
=

~TΩ2

πCvΓ

∫ ∞

−∞
dx

x

(x2 − a2)2 + 4x2
coth

( x
2b

)
,

(58)
where we have defined

x ≡ ω

Γ
, a ≡ Ω

Γ
, b ≡ T

~Γ
. (59)

We will assume that a > 1. We can now conveniently define

I ≡ πCvΓ

~TΩ2
〈δT 2〉 =

∫ ∞

−∞
dx f, f ≡ x

(x2 − a2)2 + 4x2
coth

( x
2b

)
. (60)

Notice that for this response function, the integral is no longer divergent. Consider now the contour
integral

Iγ =

∮
γ
dz

z

(z2 − a2)2 + 4z2
coth

( z
2b

)
, (61)

where γ is given in fig. 6. The contribution from the arc will vanish for xc → ∞ and xc 6= 2πbn,
meaning that the cutoff does not make the contour cut through a pole, and thus

lim
xc→∞

Iγ = lim
xc→∞

p.v. I. (62)
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Figure 6: Contour γ in the complex plane.

It is easy to estimate that the contribution from the arc will be of the order of 1/x2c .
We have two types of contributions, the first is due to the two classical poles at ±

√
a2 − 1+ i and

the second comes from the n-th Matsubara mode at 2nπbi,

Iγ = 2πi

[∑
±

Res(f,±
√

a2 − 1 + i) +
Λ∑
n=1

Res(f, 2nπbi)

]
, Λ ≡ floor

( xc
2πb

)
. (63)

The residues can be calculated easily

∑
±

Res(f,±
√

a2 − 1 + i) = − i

8
√
a2 − 1

∑
±

coth

(
±i+

√
a2 − 1

2b

)
, (64)

Res(f, 2nπbi) =
4nπb2i

(4n2π2b2 + a2)2 − 16n2π2b2
, (65)

and thus the contour integral reads

Iγ =
π

2
√
a2 − 1

sinh
√
a2−1
b

cosh
√
a2−1
b − cos 1

b

−
Λ∑
n=1

8nπ2b2

(4n2π2b2 + a2)2 − 16n2π2b2
. (66)

We will now consider the classical regime, which can be seen from fig. 6 to be where

2πb � a, or equivalently T � ~Ω
2π
, (67)

which corresponds to the situation in which the classical poles are reached at much lower frequencies
(in the complex plane) than the Matsubara modes. The classicality parameter (12) is given is by
q = 2πb/a, so we can see the how the classicality is manifested in the approximation. It will be
instructive to expand the above contour integral for 2πb � a > 1,

Iγ ' πb

a2
+

π

12b
− ζ(3)

2π2b2
+O

(
1

b3

)
, (68)

15



which we can write as

〈δT 2〉 ' T 2

Cv

[
1 +

~2Ω2

12T 2
− ~3ζ(3)Ω2Γ

2π3T 3
+O

(
~4Ω2Γ2

T 4

)]
. (69)

If b �
√
a2 − 1, then the contour integral (66) can be approximated to be

Iγ ' π

2
√
a2 − 1

[
1

2
+

1

π
arctan

(
a2 − 2

2
√
a2 − 1

)
+O

(
b2

a4

)]
. (70)

If furthermore a � 1, the above expression simplifies as follows

Iγ ' π

2a
− 1

a2
+O

(
1

a3
,
b2

a4

)
, (71)

which we can write as

〈δT 2〉 ' ~TΩ
2Cv

− ~TΓ
πCv

+ TΩO
(
Γ2

Ω2
,
T 2Γ

Ω3

)
. (72)

When a < 1, the modes become those of the overdamped regime.

B Calculation of the scalar quasinormal modes of an AdS-Reissner-
Nordström black hole

B.1 Boundary conditions

The equations of motion, which describe the coupled fluctuations of the metric and electromagnetic
field on the background of a Reissner-Nordström black hole in 4-dimensional de Sitter space were
obtained in [22] following the procedure outlined in [30]. The equations of motion for the AdS case
can be obtained simply by considering a negative cosmological constant Λ = − 3

R2 . The notation used
in this section differs from the one used in the rest of the paper, but we adopt it in order to facilitate
reference to [22, 30] keeping in mind that the final result (quasinormal frequencies) will be easy to
interpret.

The background metric is

ds2 = e2νdt2 − e2ψdφ2 − e2µ2dr2 − e2µ3dθ2, (73)

where

e2ν =
∆

r2
, e2µ2 =

r2

∆
, e2µ3 = r2, e2ψ = r2 sin2 θ, (74)

and

∆ = r2 − 2Mr +Q2 +
r4

R2
. (75)

The background electromagnetic field is described by a single component of the field-strength tensor

Ftr = −Q

r2
. (76)
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The polar (even with respect to the change of sign of φ) mode involves the fluctuations of the metric
δν, δµ2, δµ3, δψ and of the field-strength tensor δFtr, Ftθ, Frθ. The fluctuations with angular momen-
tum l and the frequency ω may be described in the following way

δν = N(r)Pl(θ), δFtr =
r2e2ν

2Q
Btr(r)Pl, (77)

δµ2 = L(r)Pl(θ), Ftθ = −re
ν

2Q
BtθPl,θ, (78)

δµ3 = T (r)Pl + V (r)Pl,θ,θ, Frθ = − iωre
−ν

2Q
Brθ(r)Pl,θ, (79)

δψ = T (r)Pl + V (r)Pl,θ cot θ.

Introducing the parameters

µ2 = 2n = (l − 1)(l + 2), (80)

p1 = 3M + (9M2 + 4Q2µ2)1/2, (81)

p2 = 3M − (9M2 + 4Q2µ2)1/2,

one can rewrite the Einstein equations for fluctuations

δRab = −2
[
ηnm(δFanFbm + FanδFbm)− ηabQδFtr/r

2
]

(82)

as a system of differential equations of first order [22]

N,r = aN + bL+ c(nV −Brθ), (83)

L,r =

(
a− 1

r
+ ν,r

)
N +

(
b− 1

r
− ν,r

)
L+ c(nV −Brθ)−

2

r
Brθ, (84)

nV,r = −
(
a− 1

r
+ ν,r

)
N −

(
b+

1

r
− 2ν,r

)
L−

(
c+

1

r
− ν,r

)
(nV −Brθ) +Btθ, (85)

Btθ = Brθ,r +
2

r
Brθ, (86)

r4e2νBtr = 2Q2 [2T − l(l + 1)V ]− l(l + 1)r2Brθ, (87)

(r2e2νBtθ),r + r2e2νBtr + ω2r2e−2νBrθ = 2Q2N + L

r
, (88)

where

a =
n+ 1

r
e−2ν , (89)

b = −1

r
+ ν,r + rν2,r + ω2e−4νr − 2

e−2ν

r3
Q2 − ne−2ν

r
, (90)

c = −1

r
+ rν2,r + ω2e−4νr − 2e−2ν

r3
Q2 +

e−2ν

r
. (91)

These equations can be decoupled upon introducing the functions

Z+
1 = p1H

+
1 + (−p1p2)1/2H+

2 , (92)

Z+
2 = −(−p1p2)1/2H+

1 + p1H
+
2 , (93)

17



where

H+
1 = − 1

Qµ

[
r2Brθ + 2Q2 r

ω̄
(L+ nV −Brθ)

]
, (94)

H+
2 = rV − r2

ω̄
(L+ nV −Brθ), (95)

and

ω̄ = nr + 3M − 2Q2

r
. (96)

The system can be reduced to the couple of equations

∆

r2
d

dr

(
∆

r2
d

dr
Z+
i

)
+ ω2Z+

i = V +
i Z

+
i (i = 1, 2) (97)

with Schrödinger-type potentials

V +
1 =

∆

r5

[
U +

1

2
(p1 − p2)W

]
, (98)

V +
2 =

∆

r5

[
U − 1

2
(p1 − p2)W

]
, (99)

where

U = (2nr + 3M)W +

(
ω̄ − nr −M + 2

r3

R2

)
− 2nr2

ω̄
e2ν , (100)

W =
∆

rω̄2
(2nr + 3M) +

1

ω̄

(
nr +M − 2

r3

R2

)
. (101)

At this point it is useful to note, that for vanishing charge (Q→ 0) the potential V +
2 reduces to the

potential for purely gravitational polar fluctuations of the Schwarzschild black hole in AdS [20]. It is not
surprising, because in this limit p2 vanishes and hence Z+

2 reduces to purely gravitational fluctuations
H+

2 plus a term proportional to Brθ, which vanishes itself according to the definition Brθ ∼ QFrθ (79).
Similarly, in this limit the mode described by Z+

1 corresponds to purely electromagnetic fluctuations
on the background of the neutral black hole. Keeping these connections in mind at nonzero Q, we will
still call the modes associated with Z+

1 and Z+
2 “electromagnetic” and “gravitational”, respectively.

In what follows, we will consider the fluctuations described by Z+
i and recover the asymptotic

behavior of the metric fields in this mode. In order to do this, we need to complete the solution of
(83-88) following the procedure outlined in [30]. First of all, we note that the sum of (84) and (85)
after the substitution of (86) may be written as

L,r +

(
2

r
− ν,r

)
L = −

[
X,r +

(
1

r
− ν,r

)
X

]
, (102)

where
X = nV −Brθ. (103)

On the other hand, we notice that the linear combination of H+
1 and H+

2 , which we denote by Z∗, is
expressed in terms of L and X as

Z∗ = nH+
2 +

Qµ

r
H+

1 =
1

ω̄
(3Mr − 4Q2)X − 1

ω̄
(nr2 + 2Q2)L (104)

= rX − nr2 + 2Q2

ω̄
(L+X).
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Substituting X from this expression into (102) we get

ω̄
d

dr

(
r3e−ν

3Mr − 4Q2
L

)
= −r d

dr

(
re−ν

ω̄

3Mr − 4Q2
Z∗
)
. (105)

The expression for L is thus obtained via the integral

L = −3Mr − 4Q2

r3e−ν

∫
dr
r

ω̄

d

dr

(
re−ν

ω̄

3Mr − 4Q2
Z∗
)

(106)

= −1

r
Z∗ +

3Mr − 4Q2

r3e−ν

[∫
dr
e−ν

ω̄
Z∗ + C

]
,

where in the second line we have performed an integration by parts and C is an integration constant.
However, the expression for X can similarly be obtained by substituting L of (104) into (102). After
the integration by parts it reads

X =
1

r
Z∗ +

nr2 + 2Q2

r3e−ν

[∫
dr
e−ν

ω̄
Z∗ + C

]
. (107)

One can check, that the constants of integration in (106) and (107) are consistent by plugging these
expressions into (102). We notice that the sum of L and X assumes a concise form

L+X =
ω̄

r2e−ν

[∫
dr
e−ν

ω̄
Z∗ + C

]
. (108)

To proceed with the evaluation of N , we take the derivative (104) and substitute the expression of
(L+X),r from (102)

Z∗
,r = rX,r +

(
3Mr − 4Q2

rω̄

)
X − r2e−ν

d

dr

(
1

r2e−ν
nr2 + 2Q2

ω̄

)
(L+X). (109)

Finally, we use equations (85) and (86) to eliminate X,r and obtain the expression for N

N =
1

ra− 1 + rν,r

{
2

r
Brθ −

d

dr
Z∗− (110)

−
[
rb+ 1− 2rν,r + r2e−ν

d

dr

(
1

r2e−ν
nr2 + 2Q2

ω̄

)]
ω̄

r2e−ν

(∫
dr
e−ν

ω̄
Z∗ + C

)
+

+

(
3Mr − 4Q2

rω̄
− ar

)[
1

r
Z∗ +

nr2 + 2Q2

r3e−ν

(∫
dr
e−ν

ω̄
Z∗ + C

)]}
.

Let us now turn to the asymptotic behavior of the master functions Z+
1 and Z+

2 . The corresponding
Schrödinger equations at large r take the form(

r2

R4
∂rr

2∂r + ω2 − µ2 + 2

R2
− 2p21
µ4R4

)
Z+
2 = 0, (111)(

r2

R4
∂rr

2∂r + ω2 − µ2 + 2

R2
− 2p22
µ4R4

)
Z+
1 = 0. (112)
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As expected in the limit Q→ 0 the equation for Z+
2 reduces to that of the Schwarzschild black hole in

[14]. Hence, for large r, the asymptotics of the master functions can be expressed as sums of linearly
independent modes

Z+
2

∣∣∣
r→∞

= α+
β

r
,

Z+
1

∣∣∣
r→∞

= γ +
δ

r
.

From (92), (93) we get the expressions for H+
1 and H+

2 and from (104) the asymptotic expression for
Z∗

Z∗ = ξ +
η

r
+

ζ

r2
, (113)

where

ξ =
n
(
p1α+

√
−p1p2 γ

)
p1(p1 − p2)

, (114)

η =
n
(
p1β +

√
−p1p2 δ

)
+Qµ

(
p1γ −

√
−p1p2 α

)
p1(p1 − p2)

, (115)

ζ =
Qµ
(
p1δ −

√
−p1p2 β

)
p1(p1 − p2)

. (116)

After plugging this expansion into (106), (107) and (110) we get at large r

L
∣∣∣
r→∞

= −
ξ − 3M

R C

r
−
η + 3M

n ξ + 4CQ2

R

r2
+O

(
1

r3

)
, (117)

V
∣∣∣
r→∞

=
C

R
+
η + 3M

n ξ + C
(
4Q

2

R + n
)

2nr2
+O

(
1

r3

)
, (118)

N
∣∣∣
r→∞

= −
η + 3M

n ξ − CnR3ω2

r2
+O

(
1

r3

)
. (119)

We should note here that because Frθ behaves as r
−2 on the boundary (one can see this from the r → ∞

expansion of the Maxwell equations) the function Brθ which enters the definition of X (103) and the
expression for N (110) falls off as r−3 and does not enter the above expansions. As discussed in [14],
the perturbations of the metric near the AdS boundary have two linearly independent modes, which
behave as r2 and 1

r . The former violates the asymptotic behavior of the AdS metric on the boundary
and should be forbidden. The latter can be nicely interpreted in the AdS/CFT correspondence as
a vacuum expectation value of the stress-energy tensor of the dual field theory and thus we need to
keep it. According to the definitions (73), (77–79) keeping the mode ∼ r−1 in the boundary metric
fluctuations, means keeping only the mode ∼ r−3 in the functions N and V . Hence, we need to choose
the constant of integration C equal to zero and demand the Robin boundary conditions on the wave
function Z∗

η = −3M

n
ξ. (120)
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Taking into account the definitions (114) we can derive the conditions on the master wave functions
Z+
1 and Z+

2 . Because the equations (97) are independent we can consider the “gravitational” and
“electromagnetic” modes separately. Thus we find

β = −
(
3M

n
+

4Q2

p1

)
α, when Z+

1 = 0; (121)

δ = −
(
3M

n
− p1

2n

)
γ, when Z+

2 = 0. (122)

We note that to obtain this result one needs to take the negative branch of the square root in (81):√
4µ2Q2 = −2µQ. This choice is motivated by the comparison with the hydrodynamic treatment

(33), discussed previously. Taking the positive branch would give results which are inconsistent with
hydrodynamics, so we ignore this possibility as unphysical. One can check, that in the limit Q → 0
the first of these conditions coincides with that obtained for the Schwarzschild black hole in [14]. This
is consistent with the fact pointed out earlier, that the Z+

2 mode becomes purely gravitational in this
limit. The second condition vanishes in this case, because at Q = 0 the “electromagnetic” mode does
not couple to gravity and the treatment based on the asymptotic behavior of the metric is no longer
valid.

The boundary conditions at the horizon r = r+ are easier to obtain. By definition, the quasinormal
mode should contain only the wave “infalling” to the horizon. In “tortoise” coordinates dr∗ = r2

∆ dr
the Schrödinger equation (97) takes the simple form[

∂2r∗ − ∂2τ − V +
i

]
Z+
i = 0, (i = 1, 2) (123)

Noticing that V +
i vanishes at the horizon, we get the infalling-wave solution in the form

Z+
i

∣∣∣
r∗→−∞

∼ e−iω(τ+r∗), (124)

B.2 Numerical solution

In order to proceed with the numerical calculation of the quasinormal modes, we make several redefi-
nitions of variables. First of all we substitute the infalling-wave Ansatz

Z = e−iω(τ+r∗)ψ(r), (125)

and get the equation for ψ

ψ′′(r) +

[
r2

∆

d

dr

∆

r2
− 2iω

r2

∆

]
ψ′(r)− r4

∆2
V +
i ψ(r) = 0. (126)

To compactify the interval of integration we introduce the variable y = 1− r+
r . After this substitution

the boundary of AdS is located at y = 1 and the horizon is at y = 0. The boundary conditions for
ψ(y) can be easily derived from (121) and (124). At the horizon the infalling-wave boundary condition
is simply stated as

ψ(0) = 1. (127)

On the AdS boundary, the condition is found from the expansion of (125) at r → ∞

ψ(y)
∣∣∣
y→1

= 1 +
1

r+

(
3M

n
+

4Q2

p1
+ iω

)
(y − 1) + . . . for “gravitational” mode, (128)

ψ(y)
∣∣∣
y→1

= 1 +
1

r+

(
3M

n
− p1

2n
+ iω

)
(y − 1) + . . . for “electromagnetic” mode. (129)
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Similar to [14] we use these boundary conditions to expand the solution in series around the singular
points of (126) at y = 0 and y = 1 to sufficiently high order and then solve the equation numerically
by seeding the shooting procedure from both ends of the interval. We then look for a frequency ω0

at which the Wronskian of the two solutions coming from opposite ends is zero at an intermediate
point. This tells us that at that given frequency the shooting solutions can be smoothly connected,
resulting in a nontrivial solution to (126) on the full interval with boundary conditions (127),(128).
This solution is the quasinormal mode and the frequency ω0 is the quasinormal frequency of the black
hole.
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